SOLVING QUADRATIC EQUATIONS BY THE QUADRATIC FORMULA

THE QUADRATIC FORMULA

$-b \pm \sqrt{b^{2}-4 a c}$
 $2 a$

2. This is the quadratic formula!
3. Just identify a, b, and c then substitute into the formula.

WHY USE THE QUADRATIC FORMULA?

The quadratic formula allows you to solve ANY quadratic equation, even if you cannot factor it.
An important piece of the quadratic formula is what's under the radical: $\sqrt{\text { Radical }}$

$$
b^{2}-4 a c
$$

This piece is called the discriminant.

WHY IS THE DISCRIMINANT IMPORTANT?

The discriminant tells you the number and types of answers (roots) you will get. The discriminant can be,+- , or 0 which actually tells you a lot! Since the discriminant is under a radical, think about what it means if you have a positive or negative number or 0 under the radical.

WHAT THE DISCRIMINANT TELLS YOU!

Value of the Discriminant	Nature of the Solutions	Picture
Negative	No solution No roots Never touches \times-axis	One Solution One root Touches \times-axis once
Positive	2 Solutions Two roots Touches \times-axis twice	

TO SUMMARIZE. . .

What do the solutions represent?
In the quadratic formula, the expression inside the $\sqrt{\text { Radical }}$ is called the discriminant.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

So $b^{2}-4 a c$ is used to find the number of solutions.

TO SUMMARIZE. . .

What do the solutions represent?
In the quadratic formula, the expression inside the $\sqrt{\text { Radical is called the discriminant. }}$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
If $b^{2}-4 a c>0$ then the equation has TWO solutions. Positive $=$ two roots

TO SUMMARIZE. . .

What do the solutions represent?
In the quadratic formula, the expression inside the $\sqrt{\text { Radical }}$ is called the discriminant.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
If $b^{2}-4 a c>0$ then the equation has TWO solutions. Positive $=$ two roots
If $b^{2}-4 a c<0$ then the equation has NO solution. Negative $=$ NO roots

TO SUMMARIZE. . .

What do the solutions represent?
In the quadratic formula, the expression inside the
Radical is called the discriminant
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ So $b^{2}-4 a c$ is used to find the number of solutions.

If $b^{2}-4 a c>0$ then the equation has TWO solutions. Positive = two roots
If $b^{2}-4 a c<0$ then the equation has NO solution. Negative $=$ NO roots
If $b^{2}-4 a c=0$ then the equation has ONE solution. Zero $=$ one root

TO SUMMARIZE. . .

What do the solutions represent?
In the quadratic formula, the expression inside the
Radical is called the discriminant.

So $\mathrm{b}^{2}-4 \mathrm{ac}$ is used to find the number of solutions.

If $b^{2}-4 a c>0$ then the equation has TWO solutions. Positive $=$ two roots
If $b^{2}-4 a c<0$ then the equation has NO solution. Negative $=$ NO roots
If $\mathrm{b}^{2}-4 \mathrm{ac}=0$ then the equation has ONE solution. Zero = one root
REMEMBER! The number of solutions is equal to the number of x-intercepts of that equation.

